Potential hazards linked to the use of disinfectants in healthcare: Health and occupational health risks assessment

Orianne Dumas, PhD, CR

Inserm
Integrative Respiratory Epidemiology team - CESP
Villejuif, France

Webinar - Promoting safer disinfectants in the global healthcare sector – 23 April 2020
Outline

I. Respiratory health effects of disinfectants and cleaning products (DCP)
 - Chronic respiratory diseases
 - DCP and asthma
 - DCP and COPD / lung function

II. Other potential health effects of DCP

III. Conclusion and pending questions
Outline

I. Respiratory health effects of disinfectants and cleaning products (DCP)
 – Chronic respiratory diseases
 – DCP and asthma
 – DCP and COPD / lung function

II. Other potential health effects of DCP

III. Conclusion and pending questions
Chronic respiratory diseases

Asthma

Definition / characteristics
• Chronic inflammatory disease of the airways
• Attacks of breathlessness with wheezing
• Chronic respiratory symptoms

Prevalence
• France: children 10-15%; adults 5-10%
• World: ~270 millions

Chronic Obstructive Pulmonary Disease (COPD)

Definition / characteristics
• Progressive and largely non-reversible airway obstruction leading to airflow limitation
• Diagnosed by lung function measurements

Prevalence
• France: Adults ≥45 years 5-10%
• World: ~300 millions, 3rd cause of mortality
15-20% of asthma and COPD cases attributable to occupational exposures (Blanc, AJRCCM, 2019)

In the past 2 decades: growing evidence for adverse respiratory effects of occupational exposure to disinfectants and cleaning products (DCP)

- (cleaning worker* OR cleaning product* OR cleaner* OR disinfect*) AND asthma
- (cleaning worker* OR cleaning product* OR cleaner* OR disinfect*) AND (COPD OR chronic obstructive pulmonary disease)
Outline

I. Respiratory health effects of disinfectants and cleaning products (DCP)
 - Chronic respiratory diseases
 - DCP and asthma
 - DCP and COPD / lung function

II. Other potential health effects of DCP

III. Conclusion and pending questions
DCP first identified as a risk factor for asthma

- **Surveillance data:** Industries/jobs accounting for a large part of occupational asthma cases:
 - Cleaners
 - **Healthcare**
 - USA: 16% (1st industry)
 - France: 12% (2nd industry)
 - **Hospital workers** - nurses, nursing aides, cleaners
 - DCP increasingly identified as causal agent

Siracusa, Allergy, 2013; Folletti, COACI, 2017
DCP first identified as a risk factor for asthma

- **Surveillance data:** Industries/jobs accounting for a large part of occupational asthma cases:
 - Cleaners
 - **Healthcare**
 - USA: 16% (1st industry)
 - France: 12% (2nd industry)
 - **Hospital workers** - nurses, nursing aides, cleaners
 - DCP increasingly identified as causal agent

- **Epidemiological studies**
 - Increased asthma risk (asthma development, asthma symptoms) among
 - Healthcare workers: nurses, nursing aides
 - Cleaners

Siracusa, Allergy, 2013; Folletti, COACI, 2017
Agents contained in DCP

Common cleaning / disinfection products

- Bleach
- Ammonia
- Acids (decalcifiers)
- Quats (quaternary ammonium compounds)
- Alcohol
- Perfumes

Products used in healthcare settings

- Aldehydes (formaldehyde, glutaraldehyde)
- Hydrogen peroxide (+ acids)
- Chlorhexidine
- Chloramine T
- Ethylene oxyde
- Enzymes (added to detergents)

Potential target(s) for prevention: which specific product(s)/agent(s)?
Specific agents associated with asthma (epidemiological studies)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study design, country</th>
<th>Outcome</th>
<th>Agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medina-Ramon, 2005</td>
<td>Spain, cleaners, n=195</td>
<td>Current asthma/ chronic bronchitis</td>
<td>Bleach, ammonia</td>
</tr>
<tr>
<td>Mirabelli, 2007</td>
<td>Europe, n=2813</td>
<td>New-onset asthma</td>
<td>BLEACH, ammonia</td>
</tr>
<tr>
<td>Vizcaya, 2011</td>
<td>Spain, cleaners, n=917</td>
<td>Current asthma, asthma symptoms</td>
<td>Hydrochloric acid, ammonia</td>
</tr>
<tr>
<td>Arif, 2012</td>
<td>USA, healthcare workers, n=3650</td>
<td>Work-related asthma / asthma symptoms</td>
<td>BLEACH, ammonia, chloramines, formaldehyde, glutaraldehyde/ ortho-phthalaldehyde, ethylene oxide</td>
</tr>
<tr>
<td>Dumas, 2012</td>
<td>France, n=724</td>
<td>Current asthma</td>
<td>Decalcifiers (acids), ammonia</td>
</tr>
<tr>
<td>Gonzalez, 2014</td>
<td>France, healthcare workers, n=543</td>
<td>Physician-diagnosed asthma</td>
<td>Quaternary ammonium compounds</td>
</tr>
<tr>
<td>Dumas, 2017</td>
<td>USA, female nurses with asthma, n=4102</td>
<td>Asthma control</td>
<td>BLEACH, hydrogen peroxide, enzymatic cleaners, formaldehyde, glutaraldehyde</td>
</tr>
<tr>
<td>Casey, 2017</td>
<td>USA, hospital workers, n=163</td>
<td>Current asthma</td>
<td>Disinfectant containing hydrogen peroxide, peracetic acid and acetic acid</td>
</tr>
<tr>
<td>Su, 2019</td>
<td>USA, healthcare workers, n=2030</td>
<td>Asthma clusters, e.g. “undiagnosed/ untreated asthma”, “asthma attacks/ exacerbations”</td>
<td>Alcohols, bleach, enzymatic cleaners</td>
</tr>
<tr>
<td>Brooks, 2020</td>
<td>New Zealand, 425 cleaners, 281 other workers</td>
<td>Current asthma, lung function</td>
<td>BLEACH, decalcifiers (acids)</td>
</tr>
</tbody>
</table>

Results presented only for chemicals significantly associated with asthma outcomes. Products with mixed composition (e.g., “detergents”, “cleaning sprays”, “multipurpose products”) not reported in this table.
Specific agents associated with asthma (epidemiological studies)

- **Bleach (chlorine) and ammonia**: first specific agents identified
- **Bleach** remains the most frequently reported

- High level disinfectants (healthcare settings):
 - Aldehydes (**formaldehyde, glutaraldehyde**) long known as causing agents for occupational asthma
 - High level disinfectants proposed as alternative to aldehydes (**hydrogen peroxide or hydrogen peroxide / peracetic acid mixtures**) also appear associated with asthma outcomes
Outline

I. Respiratory health effects of disinfectants and cleaning products (DCP)
 – Chronic respiratory diseases
 – DCP and asthma
 – DCP and COPD / lung function

II. Other potential health effects of DCP

III. Conclusion and pending questions
Working as cleaner and COPD: two European studies

RHINE III (Northern Europe): n=13,499 adults (mean age: 51.5) - Svanes, PlosOne, 2015

UK Biobank: n=228,614 adults (mean age: 52) – De Matteis, OEM, 2016

Results adjusted for sex, age, smoking, +education level, parents’ education level, body mass index
Working as cleaner and COPD mortality

Van den Borre et al, Int Arch Occup Environ Health 2018

- Linkage of Belgian census, register & death certificate data
 - Working population in 1991, ~2.5M adults
 - ~260,000 deaths from 1991 to 2011

- Cause specific mortality in death certificate:
 - ICD 9/10

- Current occupation recorded in 1991 census:
 - Comparison cleaners vs. non-manual workers (ref)

- Association with COPD mortality remained similar after adjustment for smoking (indirect) and education
- Working as cleaner also associated with mortality from lung cancer, pneumonia, ischemic heart diseases and cerebrovascular diseases with SMR range [1.10-1.50]
Working in healthcare and COPD: studies in the US

NHANES III - Hnizdo et al., AJE 2002 & AJIM 2004
• US, 1988-94
• n=9,823 adults aged 30-75 years
• Longest held job – healthcare industry

NHIS – Doney et al, JOEM 2014
• US, 2004-11
• Adults aged 40-70 years
• Current job – healthcare support

Results adjusted for sex, age, race/ethnicity, smoking, +education level/SES, body mass index
Association of exposure to specific disinfectants/cleaning products with COPD incidence

Exposure to specific agents
High vs. low exposure level

<table>
<thead>
<tr>
<th>Agent</th>
<th>HR (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formaldehyde</td>
<td>1.20</td>
</tr>
<tr>
<td>Glutaraldehyde</td>
<td>1.25</td>
</tr>
<tr>
<td>Hypochlorite bleach</td>
<td>1.36</td>
</tr>
<tr>
<td>Hydrogen peroxide</td>
<td>1.29</td>
</tr>
<tr>
<td>Alcohol</td>
<td>1.32</td>
</tr>
<tr>
<td>Quats</td>
<td>1.33</td>
</tr>
<tr>
<td>Enzymatic cleaners</td>
<td>1.05</td>
</tr>
</tbody>
</table>

n=582 incident COPD cases

- Female registered nurses from 15 US states
- Follow-up from 2009 to 2017
- 73,262 nurses (mean age: 54 years)

Results adjusted for age, race, ethnicity, smoking status and pack-years, and body mass index

References

Dumas et al., JAMA Network Open, 2019
ECRHS (Europe) – Svanes, AJRCCM 2018

- **n=6,235 adults** (mean age: 54 at end of follow-up)

- Lung function decline and airway obstruction:
 - Spirometry at each survey
 - Decline in FEV$_1$, FVC, FEV$_1$/FVC

- Cleaning exposures:
 - Cleaning at home (+ use of sprays)
 - Occupational cleaner

Results adjusted for age, height, smoking, education level, body mass index, spirometer model and study center
FEV1: forced expiratory volume in 1 second; FVC: forced vital capacity

Cleaning activities and lung function decline in women
I. Respiratory health effects of disinfectants and cleaning products (DCP)
 – Chronic respiratory diseases
 – DCP and asthma
 – DCP and COPD / lung function

II. Other potential health effects of DCP

III. Conclusion and pending questions
Other potential health hazards of occupational exposure to DCP

• Reproductive outcomes
 Use of sterilizing agents/disinfectants among female nurses associated with increased risk of:
 • Preterm birth - Lawson, AJOG 2009
 • Spontaneous abortions - Lawson, AJOG 2012
 • Reduced fecundity - Gaskins, SJWEH 2016

• Cardiovascular outcomes
 Long-term frequent use of household spray and scented products in older adult women associated with reduced Heart Rate Variability (suggests cardiovascular health hazards) - Mehta, EHP 2012

• Endocrine disruptors
 Disinfectants may contain endocrine disruptive chemicals used as preservative and antimicrobial agents (e.g., parabens, triclosan, triclocarban) – Dodson, EHP 2012
Outline

I. Respiratory health effects of disinfectants and cleaning products (DCP)
 – Chronic respiratory diseases
 – DCP and asthma
 – DCP and COPD / lung function

II. Other potential health effects of DCP

III. Conclusion and pending questions
Conclusion and pending questions

• Conclusions:
 – Strong evidence to support a link between DCP exposure and **asthma**
 – Evidence to support a link between DCP exposure and **COPD** is accumulating
 – Additional studies are needed to examine other potential health effects

• Pending questions:
 – Clarify the causative agents
 Crucial knowledge for the development of strategies for prevention, in particular in healthcare settings
 – Strategies for asthma and COPD prevention
 • Use of protective equipment, ventilation?
 • Limit use of sprays (likely to increase exposure by inhalation – Loven, Occup Env Hyg 2019)
 • Safer alternatives?
 – “Green products”? (need health safety evaluation) – Garza, AJIM 2015
 – Non-chemical disinfection? (UV light, heat) – Quinn, AJIC 2015
Acknowledgments

- Inserm CESP, Integrative Respiratory Epidemiology team (Villejuif, France)
 - Nicole Le Moul
 - Raphaëlle Varraso
 - Rachel Nadif
 - Catherine Quinot

- MGH, BWH & Harvard Medical School, (Boston, USA)
 - Carlos Camargo
 - Staff and participants of the NHSII

Contact: orianne.dumas@inserm.fr