## From a Problem to a Business Opportunity

## **Design for Environmental Biodegradability**



#### Prof. Dr. Klaus Kümmerer



Institute of Sustainable and Environmental Chemistry

http://www.leuphana.de/en/institutes/isec.html



International Sustainable Chemistry Collaborative Centre

http://isc3.org

## 1. Introduction

- 2. Approach
- 3. Examples
- 4. Conclusions





#### **Increasingly End of Life Issues**

(concentration, temporal and spatial scales, variety of micro pollutants)

Number of pharmaceuticals detected in surface water, ground water, tap water (number per country)



Tim aus der Beek, Frank-Andreas Weber, Axel Bergmann, Gregor Grüttner, Alexander Carius: Pharmaceuticals in the environment: Global occurrence and potential cooperative action under the Strategic Approach to International Chemicals Management (SAICM), Umweltbundesamt, Texte Nr. 67/2016, Berlin, September 2016, 38







#### **Metformin and Biotransformation Product Guanyl Urea**

German Rivers Elbe, Weser and North Sea







#### Elimination of Micro-Pollutants in Advanced Waste Water Treatment

| tion [%] | 100<br>80<br>60<br>40<br>20 | Ozonation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eliminat | 0                           | Paracetamol<br>Inmethoprim<br>Sotalol<br>Mefenamic acid<br>Propranolol<br>Gemfibrozi<br>Ofloxacin<br>Bisphenol A<br>Clindamycin<br>Bisphenol A<br>Clindamycin<br>Bisphenol A<br>Sulfamethoxacole<br>Bisphenol A<br>Asithromycin<br>Bisphenol A<br>Altarolo<br>Intervol<br>Atravin<br>Diatrizol acid<br>Atravin<br>Diatrizol acid<br>Diatrizol acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ion [%]  | 100<br>80<br>60<br>40<br>20 | PACX/UF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Eliminat | ŭ                           | Paracetamol<br>Paracetamol<br>Propranotri<br>Norfloxacin<br>Ibuprofen<br>Offoxacin<br>Ibuprofen<br>Offoxacin<br>Bisphenol A<br>Naproxen<br>Triclosan<br>Metromidazole<br>Simvastatin<br>Bisphenol A<br>Naproxen<br>Diazinon<br>Bisphenol A<br>Naproxen<br>Diazinon<br>Bezafibrazie<br>Benzotriazole<br>Carbamazepine<br>Triclosan<br>Metroprofen<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazinon<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diazino<br>Diaz |
|          |                             | Margot et al. 2013, Sci. Total Environ. 2013, 461-462, 480-498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |





#### **Many Precursors - One Transformation Product**

(formation of possibly unknown, toxic chemicals in advanced effluent treatment)



LEUPHANA



## **One Precursor – Many Transformation Products**

**UV-Photolysis of Ciprofloxacin** 

Detected Transformation Products (High Resolution LC-MS/MS)



Haddad T. and Kümmerer K. (2015), Chemosphere 115, 40-46





#### **Toxicity of CIP Photo Products** (Micro-Nucleus Test, Cell Toxicity)



Garcia-Käufer, Haddad, Bergheim, Gminski, Gupta, Mathur, Kümmerer, Mersch-Sundermann (2012), ESPR, 19, 1719-1727





#### Limits of (Advanced) Effluent Treatment

#### Not just many different parent compounds – also often numerous unknown transformation products per parent compound

#### Too little knowledge, too many compounds for targeted treatment and end points for a risk assessment





#### Products of Incomplete Mineralization (mostly unknown!)







#### **Dynamics of Compounds** Usage of Pharmaceuticals (Germany)







## Short Comings of (Advanced) Effluent Treatment

- Advanced filtration technologies (reversed osmosis, membrane filtration, nano-filtration), and (photo)oxidation technologies are emerginng.
- Even combibations fail to remove all aconatminant
- Efficiency depends strongly on the type of compound.
- AOP: Reaction by-products may be toxic, mutagenic, genotoxic, …
- Costs?
- Storm water?
- Infiltration of the ground before STP?





## **Increasing Need of Water (Re)use**



UPHANA

Institut für Nachhaltige Chemie und Umweltchemie > 80% of the world's wastewater released untreated

#### Increasing need of water (re)use (population growth, climate change



## 1. Introduction

- 2. Approach
- 3. Examples
- 4. Conclusions





# A smart person solves a problem.

## A wise person avoids it.



Attributed to Albert Einstein





A smart person solves a problem.

A wise person avoids it.

Attributed to Albert Einstein



#### **Measures at the source (users, molecules)**

Kümmerer K., et al. Science 361 (6399), 222-224 (2018) Kümmerer K., et al. Science of the Total Environment,





### Less Usage-Feasible?







#### Less Usage-Feasible! Use Patterns (DDD per 1000 people per day)





**ISC**₃

#### Less Usage-Feasible! Use patterns (DDD per 1000 people) Antibiotics 2011







Health at a Glance:

Europe 2014

#### Less Usage-Feasible! Use Patterns Veterinary Antibiotics (EU) (mg/kg Biomass)







#### In the Patient Less excretion

- Improved up take in the intestine and the target (drug delivery, drug targeting, resorption)
- Improved degradation of the non resorbed share in the intestine
- Watch out! Compounds of higher efficacy may result in lower amounts and environmental concentrations but not lower risk!





#### **Compounds Still Needed and Excreted**

What Is the Problem ?

## Persistence





## **Avoiding Environmental Persistence**







Suitainable Chemistry and Pharmacy 2 (2015) 31-36

Contents lists available at ScienceDirect
Sustainable Chemistry and Pharmacy
journal homepage: www.elsevier.com/locate/scp

Putting benign by design into practice-novel concepts for green and sustainable pharmacy: Designing green drug derivatives by non-targeted synthesis and screening for biodegradability

Christoph Leder, Tushar Rastogi, Klaus Kümmerer\*

Sustainable Chemistry and Material Resources. Institute of Sustainable and Environmental Chemistry. Leuphana University Lüneburg, C13, Schamhorststraß-L, DE-21335 Lüneburg, Germany



Editor in Chief K. Kümmerer Leuphana Universität Lüneburg

#### Associate Editors

James Clark University of York Nicholas Gathergood Tallinn University of Technology Borhane Mahjoub University of Sousse Ayrton Martins Universidade Federal Santa Maria Benoit Roig University of Nimes

#### OPEN ACCESS OPTIONS

Andread and Secondary and Pranking profiles in Provide the replace to posterior prepare operations. Second to posterior for example to change resource the rest of control to change.







## Stability i.e. Reactivity (!) is a Function of ...

- Diversity of metabolic enzymes, e.g. bacteria: narrow spectrum in humans, broad spectrum in the environment
- pH (municipal sewage 7-9; stomach < 2)</li>
- Redox potential: gut anaerobic, environment often aerobic
- Light: access, spectrum, and intensity; photolysis type I & II (e.g. by presence of humic substances)
- Temperature
- Concentration
- Humidity

. . .

🛄 Kümmerer K., Green Chem. 9, 899

📖 Kümmerer K., In: Kümmerer K., Hempel M. (Eds) Green and Sustainable Pharmacy , Springer 2010)







## **Rational Drug Design - Revisited**

- High oral absorption
- Effective and efficient
- Receptor specific
- Reduced/no unwanted side-effects
- metabolized to harmless metabolites
- ...
- High degree of mineralization after introduction into the environment





## What Would that do to the Drug Discovery Process?

- Starting from (already known?) lead structure
- Optimization as usual (e.g. by chemo informatics)
- New: including after use life at early stage
  - Challenging
  - Paradigm shift
  - Fascinating problem (not toxic/envionmenatlly biodegradable)





# Introduction Approach Examples Conclusions







Environmental Science and Technology, 49, 11756–11763 (**Propranolol**; editors choice, open access)



Klaus Kümmerer

OH

4-Hydroxypropranolol

 $\bigotimes$ 

LEUPHANA

Institut für Nachhaltige Chemie und Umweltchemie

#### Pharmacological Activity of 4-Hydroxypropranolol In Vitro Analysis



#### Re-Design and De-Novo Design Examples

## Anti-Cancer Drugs: patent



Rümmerer K, Frei E, Marano G, Wiessler M., in preparation





Re-Designing of Existing Pharmaceuticals for Environmental Biodegradability: A Tiered Approach with  $\beta$ -Blocker Propranolol as an Example

Tushar Rastogi, Christoph Leder, and Klaus Kümmerer\*

Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, C13, DE-21335 Lüneburg, Germany

- Rastogi T, Leder C, Kümmerer K (2014) Chemosphere, 111, 493–499 (Metoprolol)
- Rastogi T, Leder C, Kümmerer K (2015) RSC Advances, 5, 27-32 (Atenolol)

#### Antibiotics: Two patent apllications pending





#### Carrots

- Prolonged patent life-time
- Fast track authorization
- Precautionary principle (subset of arguments)



US- Department of Agriculture

- Important contribution to CSR
- Increased reputation
- Vision: "next generation" is greener!



#### Incentives

## New compound

### New business opportunity







#### Carrots



## **Opportunity/business case**

VS.

## falling behind







#### ... and Sticks

- EMA: Revision of EMEA guideline (EU Parliament)?
- EEA Report 1/2010: "Pharmaceuticals in the Environment
- Legislation (e.g. EU Water Framework Directive)
- U.S. Senate Hearing

 $\bigotimes$ 

Institut für Nachhaltige nemie und Umweltchemie

• The greener consumer



A Technical report | No. 17201

Pharmaceuticals in the environment Results of an EEA workshop

European Environment Agency 🎇

http://www.eea.europa.eu/publications/ pharmaceuticals-in-the-environment-resultan-eea-workshop





## Schering-Plough (Press release 2007)

New product for birth control under investigation

- Composition:
  - natural, degradable estrogens
  - and a biodegradable progesterone





## **Arguments and Counter Arguments**

Ethics: Not to deny anyone from a new pharmaceutical, however, how many are not developed for economical reasons (antibiotics, malaria, AIDS, lepra, children ...)

Costs: Drug development is very expensive, however, quite a big share of costs is related to marketing (> 2/3?)

Shortage of new compounds: further regulation (environment) will result in less compounds, however,

(1) already more than one compound on the market for most groups (e.g. sartanes)
(2) new regulations result in the longer run in new and better compounds (see e.g. increased toxicological requirements after Contergan case) - new innovation space





## Instead of a Summary

New ideas are not successful because the people sticking to the old ideas are convinced but because they will die out and the next generation is raised with the new ideas.



Max Planck





#### **Take-Home Message**

- 1. (Advanced) Effluent treatment cannot cope with the challenge
- 2. Re-Design can result in active but environmentally biodegradable pharmaceuticals
- 3. Environmental biodegradability can be included in denovo design
- 4. Benign by Design is a new business opportunity!



